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1. INTRODUCTION

In every text-book about Crystallography one can read sentences like
this: If the phases of the structure factors are known then the crystal struc-
ture is known, for one can compute the electron density p(r) by a Fourier
summation.

1
p(r) = - E F(h) exp -2 it i r h

V h

V
h

l
F(h) ^ exp i p (h) exp - 2 n i r h

1

(1)

However, the trouble is the lack of the detectors to be sensitive for
phases, that means that only the moduli of the structure amplitudes I F(h) I
can be derived from the measures intensities and its phases (h) are
unknown. These facts are- called the phase problem of cristallography.

In order to get information on the phases of diffracted waves the only
thing would be to carry out an interference experiment. For instance, su-
perimposing two coherent waves with amplitudes Al and A2 and phases u1
and u, the resultant intensity Ices depends on the amplitudes of the indivi-
dual waves and on their phase-difference.

Its, I A,.,,12 = I (AI exp ial + A2 exp ia2)1 2 (2)

=A12+A22+2Al A,cos (a2-al)

This is the principle of interferometry and holography.
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Interference of several coherent diffracted waves inside a crystal can
be achieved with a so-called multiples-beam case. N-beam multiple dif-
fraction occurs when N-1 sets of lattice planes are simultaneously brought
into position to diffract the incident beam, i.e. N-1 sets of lattice planes si-
multaneously satisfy Bragg's diffraction condition. In other words N reci-
procal lattice points, including the origin, are simultaneously on the surfa-
ce of the Ewald sphere. Then all the diffracted wave fields interact with
each other due to the fact that all the difference vectors of the reciprocal
lattice h;h, of the excited Bragg waves terminate on the Ewald sphere. In-
terference effects change the intensity of each Bragg reflection. It is this in-
tensity variation which gives the phase information.

Already in 1949 Lipscomb (1949) and at the same time Fankuchcn
have suggested to use the three-beam case for experimental phase determi-
nation. But no experimental results have been reported. At the end of the
70s and in the 80s the feasibility of this method has been shown by several
authors (references can be found in the review article by Shih-Lin Chang
(1987)).

For understanding the interaction among the diffracted waves inside
the crystal, the dynamical theory for multiple x-ray diffraction must be
used. For basic discussions we shall concentrate in this article on the three-
beam case. We will give a brief survey of the dynamical theory for three-
beam diffraction. The solution of the fundamental dynamical equations
will be discussed with few mathematical and mostly physical arguments.

A systematically experimental way of generating multiple diffraction
is an azimuthal scan, a so-called w-scan, around a scattering vector which
is first aligned for reflection (primary reflection), i.e. it terminates on the
Ewald sphere. By rotating the crystal in that way additional reciprocal lat-
tice points can be brought on the Ewald sphere (secondary reflections).
Thus multiple diffraction is generated. If exactly one additional secondary
reflection is excited then a three-beam case is generated.

The experimental procedure is discussed in details in the lecture of E.
Weckert.

2. T HRI.I.-BP.AM INTLRI-t:RI NCi

This case is represented schematically in figure 1. Figure I a shows the
three-beam diffraction in crustal space, figure lb in reciprocal space
(Ewald construction). The indident beam is diffracted at the lattice plane
denoted by the reciprocal lattice vector h and simultaneously at the lattice
plane g. Thus, three strong waves are excited in the crystal: the incident
wave and the two Bragg reflections h and g. If we look, for example, for
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the waves propagated in the direction of the h-reflection, denoted by

K(h), then a superposition of two waves occurs: first, the directly diffracted

wave at the lattice plane h and secondly, a so-called Umweg-wave, which is

twice reflected at the lattice plane g and once more at the lattice plane h-g

into the direction of the h- reflection. This lattice plane h-g must exist, since

h-g is also a vector of the reciprocal lattice (see figure 1b). ±(h-g) couples

the h- and the g-reflection. However, let us neglect for the moment that the

h-reflection is also diffracted into the g-reflection by g-h. Generally

speaking, the wave vectors of the three beams do not lie in one plane as it

is drawn in figure 1 for the sake of simplicity.

Renninger (1937) has already proven experimentally that such an

Umweg wave must exist. He observed the intensity of the forbidden (222)-

Fig. 1. Schematical representation of a three-beam case. a) in crystal space, b) in reciprocal

space (Ewald construction).

M
i
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reflection of diamond during a w-scan around (222). Each time when a se-
cond reciprocal lattice point passes the Ewald sphere a more or less strong
diffracted intensity was measured, otherwise the intensity was very weak.
Renninger called this effect Umweg-Anregung (Umweg excitation).

What is the phase difference between the primary reflection and the
Umweg-reflection, which governs the resultant intensity due to interfe-
rence (cf. cqn.(2)). The primary h-reflection has the phase p (h) due to the
phase of its structure factor F(h). The Umweg-wave has the phase (g) +
(h-g) due to the structure factor product F(g)F(h-g) because it is twice

diffracted at the corresponding lattice planes. Thus, the phase difference is
given by:

(D3(h, g) = (g) + (h-g) - (h) (3a)

In the absence of anomalous dispersion effects (3a) can be rewritten:

q)3(h, g) = (g) + (h-g) + (-h) (3b)

(D3(h, g) is a so-called triplet phase relationship.
As we shall see in the next chapter dynamical theory of multiple-

beam diffraction gives an additional phase shift since in that regime Bragg
reflection must be regarded as a spatial resonance phenomenon. Therefo-
re, we must take a look at the dynamical theory for three-beam interferen-
ce in order to understand the intensity variations during a W-scan through
a three-beam diffraction position.

3. THREE-BIEAM DYNAMICAL THEORY

The fundamental equations of dynamical theory (5) are the solution
of Maxwell's equations taking into account that the dielectric susceptibili-
ty has to be taken as translationally symmetric because of the short wave-
length of x-rays in the order of atomic resolution. Thus, all the wavefields
show also translational symmetry and they have to be expanded in Fourier
(Bragg) suns over all reciprocal lattice vectors. For example, the dielectric
displacement D is given by:

D(r) = I D( n) exp {2 Ti i K(n)} with K(n) = K + n (4)
n

where n are the reciprocal lattice vectors.

Analogous sums must be taken for the magnetic and electric field.

[Bud I.Soc. Cat.(. ien.J,vol.XIII,Nunt.1,1992
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Putting these sums into Maxwell's equations one gets the fundamental

equations of dynamical theory (Pinsker, 1978):

D(n) = R(n) E x(n - m) Dn(m);
m*n

x (n) = F (F(n ); n, m run over all the reciprocal lattice vectors.

(5)

D(n) denotes the dielectric displacement of the wavefield due to scattering
vector n. Dn(m) stands for the projection of D(m) on D(n), both are al-
ways perpendicular to their wave vector K(n) and K(m), respectively. F(n)
is the structure factor. F = (e2/mec2) (2 o2 / nVJ (me: electron mass, V,: vo-
lume of the unit cell) is a small number of the order of 10-' and gives the
strength of the coupling between X-ray and electrons in the framework of
Thomson's scattering theory.

The physical content of (5) can be described as follows. Each wave-
field D(m) scatters part of its amplitude into the wave field D(n) caused by
the diffraction at the lattice plane n-m. The strength of the interaction bet-
ween D(m) and D(n) is given by FF(n-m). The resultant amplitude of the
wave field D(n) is given by the interference of all contributions of the ot-
her wave fields D(m) to D(n).

The excitation of the different wave fields D(n) is governed by the ex-
citation error (Resonanzfehler)

R(n) = B(n)_ I
= K(n)2 / (K2 - K(n)2) (6)

K I = so(1 - 1/2 17 F(O)) = 1 /2 ; so = 1 /2

ko, x are the wavelengths of vacuum and medium (crystal), respectively.
That means, that only such wave fields are strongly excited and have to be
taken into account, which fulfill Bragg's law. Then the length of the wave
vector K(n) is equal to the radius of the Ewald sphere K and R(n) has its
maximum value. R(n) decreases with the distance of the endpoint of n and
K(n) from the Ewald sphere since K(n) = K + n.

This is the reason why it is allowed to cut off the infinite number of
fundamental equations to three equations in a three-beam case, when only
three strong waves D(O), D(h ) and D(g) are simultaneously excited.

To make things simpler, for the calculation of the amplitude of the
primary reflection D(h), we set all the scalar products, which take into
account the projection Dn(m), equal to one. So we neglect the coupling
between the m and r polarization components of each wave field (Hum-
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mer, Billy, 1986) and we are left with the following simplified system of
equations for the three-beam case:

B(O) x(-h) x(-g)

x(h) B(h) x(h-g)

x(g) x(g-h) B(g)

D(0)

D(h)

D(g)

=0 (7)

To solve these equations for the ratio D(h)/D(0) Bethe approxima-
tion is employed. This means the amplitude of D(g) is expressed in terms
of D(0) and D(h) using the third equation of (7). Substituting in the se-
cond equation of (7), for instance, and solving for D(h)/D(0) we get:

D(h)/D(0) = R(h) F [F(h) + F R(g) F(g) F(h-g)] (8)

This result can be interpreted as follows. The amplitude in the two-beam
case, i.e. no secondary reflections are excited, given by D2(h)/D(0) _
R(h) F F(h) (first term of (8)) is modified by higher order terms due to ex-
citation of other reflections. Obviously, if R(h) is negligibly small, i.e.
Bragg's law for the h-reflection is not fulfilled, then no intensity can be
observed in the direction of K(h). This is also true, even though other
wave fields are excited by carrying out a y-scan around h, so that other
reciprocal-lattice points pass through the Ewald sphere. In this case
Bragg's law for the scattering of the secondary g-reflection into the h-re-
flection is also not fulfilled, because the endpoints of the coupling vector
h-g does not terminate on the Ewald sphere.

Thus, a strict prerequisite in order to observe the modification of the
intensity of the h-reflection by the additional excitation of other reflection
is to keep h precisely on the Ewald sphere during the y1-scan.

In this case the primary h-reflection can be considered as a reference
beam modulated by the secondary reflection. Thus the w-scan experiment
generating multiple diffraction closely resembles holography. The interfe-
rence contrast gives the phase information. Therefore, the amplitude (in-
tensity) of the primary h-reflection is normalized and (8) is rewritten:

D(h)/D(0 ) = R(h) F F ( h) [1 + F R(g) {F(g) F(h-g)/F(h)}] (9)

Equs. ( 8) and ( 9) confirm the considerations of section 2 . In the three
beam case the wavefield D(h) is given by a superposition of two waves:
the directly diffracted wave governed by the structure factor F(h) and the
Umweg wave governed by the product of structure factors F(g) F(h-g).

[Butll.Sur.Cat .Cicn.],Vol .XIII,Num.1,1992
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As can be seen from (9) (cf. the {term}) the phase relationship which go-
verns the interference of both waves is given by equ. (3).

As can further be seen from (8) and (9) the resonance term (excitation
error) R(g) governs the amplitude of the Urpweg wave and causes an addi-
tional phase shift by 1800 during the y-scan. We assume that it is carried
out in such a way that the the endpoint of g passes the Ewald sphere from
inside to outside. At the beginning of the yr-scan when g terminates inside
it is I K (g) I < K I since K(g) = K + g (cf. Fig. 2), i.e. the denominator of
R(g) is positive. When g approaches the Ewald sphere R(g) gets larger and

out

0
Ewald sphere

Fig. 2. Behaviour of K(g ) during the W - scan from inside to outside.

larger since the denominator approaches to zero, i.e. the amplitude of the
Umweg wave increases. It has its maximum value when g exactly lies on
the Ewald sphere. When g leaves the Ewald sphere the amplitude of the
Umweg wave decreases and R( g) has changed its sign, since I K(g) I > I K
when g terminates outside ( cf. figure 2). Changing its sign R(g) causes an
additional phase shift by 180°. The behaviour of the amplitude.and the
phase shift of the Umweg wave during the y-scan is depicted in figures
3a and b.

Thus, the total phase relationship between the primary reflection and
the Umweg reflection depends on yr and is given by:

'Dtot(w) _ (D3 + A (yr ) = p (g) + w (h-g) -,P (h) + A(y) (10)

0 < A(y ) < 180° for a yr- rotation sense: inside --- outside

That is all we need to discuss the three - beam y -scan profiles for different
triplet phase relationships.

[Butll.Soc.Cat. Cien.],Vol.XIII, Num.1,1992
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amplitude Rg(yP) phase A(y)

(orb. units) (deg)

101 3 180

in -0 0 -k out in 0 -' out

Fig. 3. Behaviour of the Umweg %\',I\ C. I) amplitude, b) resonance phase shift

4. THF. P-SCAN PROFILES

4.1. Ideal Profiles

jJ

As already discussed above, a basic requirement for multiple-beam yl-
scans is that the endpoint of the primary scattering vector h remains exac-
tly on the surface of the Ewald sphere. Then the primary diffracted wave
serves as a reference wave which amplitude remains constant. It is modu-
lated by the Urnweg waves due to the excitation of secondary reflections.

This modulation gives information on the triplet phase relationship in case
of three-beam diffraction.

As we shall see it is absolutely necessary to know the rotation sense
of the W-scan experiment. To be clear we discuss the W-scan profiles in

case of a rotation sense when the secondary scattering vector g passes the
Ewald sphere from inside to outside. In the plots y = 0 gives the exact
three-beam position: W < 0 means g terminates inside and 11 ? 0 means g
terminates outside.

Suppose the triplet phase of a three-beam case 0, h, g is zero: (1), = 0".

Then, at the beginning of the y-scan A(y) = 0 and 0. The amplitude

of the Umweg wave is very small and the two-beam intensity I D,(h)12 is

observed. Scanning towards the three-beam position the amplitude of the

Umweg wave incraeses and the primary wave and the Umweg wave inter-

fere in a constructive way which leads to an increase of the resultant am-

plitude of D(h). Thus, its intensity is increased. Very near to the three-

beam position A(y) shifts very rapidly from 0 to 180", then tht^ t = 180".

[But IISoc.Cat.Cien.],Vol.XIII,Num.1,I992
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That means the interference becomes destructive and the intensity is de-
creased. At the end of the w-scan when the amplitude of the Umweg wave
gets smaller and smaller the two-beam intensity is observed again. This yr-
scan profile for (D3 = 0 is shown in figure 4a.

For c3 = 180" the W-scan profile is inversed with respect to y = 0 as

shown in figure 4d. This behaviour is explained as follows. At the beginning

of the y-scan the phase relationship between the interfering waves tot =
(U, + A(y) = 180 + 0 = 180". Thus, increasing the amplitude of the Um-

weg wave by scanning towards the three-beam position the intensity is

first decreased because of destructive interference and then increased. Be-

cause, if g terminates outside the Ewald sphere then in that case (Dtot = 180"

+ 180" = 0 mod 360", which leads to construcive interference.

It follows the explanation of the three-beam profiles for (D3 = + 90°

or - 90°. In the case of tG, = + 90°, (Dtot shifts from 90° to 270° during the

y-scan. At the exact the three-beam position (Dtot = 90 + 90 = 180", since

A(y) = 90° at yl = 0 as can be seen in figure 3b and at the same time the

amplitude of the Umweg wave has its maximum value. The result is a

symmetrical profile around y = 0 caused by destructive interference. In

the case of (1)3 = - 90°, (1)t shifts from - 90° to + 90". Since at the exact

three-beam position (Dt„t = - 90° + 90° = 0, a symmetrical profile is

observed where the two-beam intensity is increased because of cons-

tructive interference. Both cases are depicted in figures 4b and c.

03 = 0

0 psi

N

03 = -90

I I i

0 psi

Fig. 4. Ideal three-beam diffraction profiles.
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The three-beam diffraction W-scan profiles for triplet phases of + 45,
+ 135", - 45 and - 135 must be betwen both the profiles of 0 and 90°, 90
and 180", 0 and - 90°, - 90 and 180", respectively. For example, the three-
beam profile for + 45 must first show a slight increase (cos 45 > 0) and
then a distinct decrease since in the exact three-beam position when
A(4) = 90°, so that (Dtt,t = 135", and when the amplitude of the Umweg
wave is highest, it results a destructive interference (cos 135 < 0). All the
ideal yr-scan profiles are depicted schematically in figure 6.

Hummer & Billy (1986) explained the ideal W-scan profiles due to
three-beam interference effects by means of phase-vector diagrams.

4.2. Profiles with Umweganregung and Aufhellung Effects

These ideal profiles can be only observed if the amplitudes of the in-
terfering waves fulfill certain conditions. In general, the y-scan profiles
consist of two parts: a phase-dependent part (ideal profile) due to the in-
terference effect which bears the phase information and a symmetric pha-
se-independent part due to the mean energy flow in a three-beam case
which must be either incoherently added in case of Umweganregung ef-
fects or substracted in case of Aufhellung effects (Weckert & Hummer,
1990).

Remember the fundamental equation of interference (2). The first
two terms represent the incoherent addition of the intensities of each
wave. The third term represents the interference effect. If, for example,
Al > A2 then the interference contrast is small compared to the phase inde-
pendent intensity A12 + A22. A similar effect occurs if one of the h- or g-
reflection is much more stronger or weaker then the other.

Suppose the h-reflection is very weak. This is similar to the original
Renninger experiment (Renninger, 1937). Then, independent of the value
of the triplet phase (1)3 intensity of the g-reflection is coupled into the h-
reflection via h-g. This would lead to strong Umweganregung effects
which give no phase information like in the Renninger experiment. On the
other hand, suppose the h-reflection is strong, then intensity is coupled
out off the h-reflection via g-h into the g-reflection. This would lead to
Aufhellung effects independent of the triplet phase. The ideal profiles can
only be observed when the energy flow between the h-reflection and the
g-reflection is well balanced, i.e. the same amount of energy is coupled out
off and coupled into the h-reflection and g-reflection, respectively. This
energy flow is governed by the law of conservation of energy. It can be
described by a coupled system of differential equations (Moon & Shull,
1964). It depends only on the moduli of the structure factors involved in
a three-beam case.

[ButIISoc.Cat. Cicn.],Vol.XIII, Num.1,1992
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Existence of such Umweganregung and Aufhellung effects have been

proved theoretically and experimentally by Weckert & Hummer (1990)

and Hummer et. at. (1990). A theoretical example is shown in figure 5. The

w-scan profiles are numerically calculated solving the fundamental equa-

tions of three-beam dynamical theory where the triplet phase involved is

set to ± 90°. The criterion whether Umweganregung or Aufhellung oc-

curs is the ratio Q F(g) F(h-g) F(h ) 2. Ideal profiles occur for Q

4 (figure 5a). The profiles in figure 5b were calculated increasing I F(g) I from

20 to 75 leaving the other structure factor moduli constant, i.e. Q was in-

creased to - 13. As a result strong Umweganregung effects.occur, so that

the destructive interference effects in case of + 90° is overcompensated. But

nevertheless, there is a big difference between both profiles. The relative

intensity change of the two-beam intensity comes to + 28% for (D3 90

and 6% for D3= + 90. That means that an interference effect of ± 11 % is

superimposed by an phase-independent Umweganregung of + 17%. The

profiles in figure 5c were calculated decreasing I F(g) I to 5, i.e. Q -~ 0.9,

leaving all the other parameters constant. As a result strong Aufhellung ef-

fects occurs coming to -7.5%, the interference effect being ± 1%. In the

case that the Umweganregung or Aufhellung effects are dominating com-

pared to the interference effect no phase information can be deduced.

Possible w-san profiles are listed in figure 6. The profiles with Umwe-

ganregung of Aufhellung effects are gained by adding a phase-independent

symmetrcal Umweganregung or Aufhellung profile to the ideal w-scan

profiles. In figure 6 the Umweganregung and Aufhellung intensity was

chosen such that the destructive or constructive interference effects for

triplet phases of + 90° and - 90° were just compensated.

The phase-independent part can be experimentally evaluated by com-

paring the w-san profiles of the two centrosymmetrically related three-

beam cases 0/h/g and 0/-h/-g where for both cases the structure factor

moduli remain constant, however their signs are reversed and therefore

the sign of the triplet phase involved is also reversed.
It can be seen that in these cases phase determination is possible with

an accuracy of about 45° since all the w-scan profiles show significant
differences. Moreover, also the sign of the triplet phases of non-centro-

symmetric structures can be determined. This is extremely important for

solving the enantiomorphy problem in light atom structures where ano-

malous dispersion effects are very weak. By determination of the sign of

a triplet phase the absolute configuration is absolutely fixed. It should be

pointed out that for the three-beam method no anomalous dispersion ef-

fects are needed.
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Triplet- Phase
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Ideal
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Umweg-
anregung
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Fig. 6. Catalogue of possible W-scan profiles in case of three-beam diffraction.

5. SUMMARY

It has been shown that in case of three -beam diffraction an interferen-
ce of two wave fields occur: the directly diffracted primary wave and the
`Renninger' Umweg wave are propagated in the same direction. Their
phase difference is a triplet phase relationship which gives rise to sig-
nificant W - scan profiles . In general , each y1 - scan profile is a superposition
of a phase-dependent interference profiles and phase-independent
Umweganregung of Aufhellung profile. By comparing the w-scan profiles

[Budl.Soc.Clt .Cicn.],Vol.X111, N6m.1,1992
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of the two centrosymmctrical related three-beam cases 0/h/g and 0/-h/-g
these latter part can be evaluated and experimental determination of the
triplet phase is possible with an accuracy of about 45°. Since also the sign
of the triplet phase can be determined the absolute structure in case of
non-centrosymmetry can be fixed.

ABSTRACT

It is shown that in case of three-beam difraction an interference of two wave

fields occur: the directly primary wave diffracted at the lattice plane of h and the

`Renninger' Umweg wave successively diffracted at the lattice plane of g and h-g,

both are propagated in the same direction. Their total phase difference is given by a

triplet phase relationship of the structure factor ratio F(g) F(g-g)/F(h) and an additio-

nal resonance phase shift by 180° in case of an azimuthal scan around the primary

scattering vector h(y-scan) through a three beam position 0/h/g. This total phase dif-

ference leads to significant W-scan profiles for each triplet phase. In general, each yr-

scan profile is a superposition of a phase-dependent interference profile and phase-in-

dependent Umweganregung or Aufhellung profile which depends on the structure

factor moduli. By comparing the y-scan profiles of the two centrosymmetrical related

three-beam cases 0/h/g and 0/-h/-g these latter pats can be evaluated and experi-

mental determination of the triplet phase is possible with an accuracy of about 45°.

Moreover, in case of non-centrosymmetry the sign of the triplet phase can be deter-

mined. Thus, the absolute structure can be fixed.

[Butll.Soc.Cat.Cicn.],Vol.XIII,Num.1,1992
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